@Diligence

FUZZING SCRIBBLE ABOUT

BrahmaFi

1 Executive Summary

2 Scope

2.1 Objectives

3 Recommendations

3.1 Use the same Solidity version
across contracts

3.2 General Recommendations

4 Security Specification

4.1 Privileged users trust
assumptions

4.2 Observations

5 Findings

5.1 The virtual price may not
correspond to the actual price in
the pool

5.2

ConvexPositionHandler._claimRewarc

incorrectly calculates amount of
LP tokens to unstake

5.3 The WETH tokens are not
taken into account in the

ConvexTradeExecutor.totalFunds
function

5.4 LyraPositionHandlerL2

inaccurate modifier

onlyAuthorized may lead to funds

loss if keeper is compromised
Medium

5.5 Harvester.harvest swaps have
no slippage parameters 'Medium

5.6 Harvester.rewardTokens
doesn’t account for LDO tokens
Medium

5.7 Keeper design complexity
Medium

5.8 Vault.deposit - Possible
front running attack 'Medium

5.9 Approving MAX_UINT amount
of ERC20 tokens ({13

5.10 Batcher.depositFunds may
allow for more deposits than
vaultinfo.maxAmount ({73

511 The Deposit and Withdraw
event are always emitted with

zero amount (Y3

512

BaseTradeExecutor.confirmDepos
it | confirmWithdraw

- Violation of the “checks-effects-
interactions” pattern ({3

5.13 Batcher doesn’t work
properly with arbitrary tokens

[Minor
Appendix 1- Files in Scope

Appendix 2 - Disclosure

Date May 2022
David Oz Kashi, Sergii
Auditors Kravchenko, George
Kobakhidze

1 Executive Summary

This report presents the results of our engagement with Brahma Fi to review ETH Maxi.

The review was conducted over two weeks, from May 16, 2022 to May 26, 2022 by David Oz Kashi, Sergii Kravchenko, and
George Kobakhidze. A total of 30 person-days were spent.

2 Scope

Our review focused on the commit hash 3c42187de564dea9db97ce3835b6ab7993ab96a3 . The list of files in scope can be found in the
Appendix.

2.1 Objectives
Together with the Brahma Fi team, we identified the following priorities for our review:

1. Ensure that the system is implemented consistently with the intended functionality, and without unintended edge cases.

2. ldentify known vulnerabilities particular to smart contract systems, as outlined in our Smart Contract Best Practices, and the
Smart Contract Weakness Classification Registry.

3 Recommendations

3.1 Use the same Solidity version across contracts
Description

Most contracts use the same Solidity version with pragma solidity *e.8.e . The only exception is the Batcher contract that has

pragma solidity %0.8.4 .

Recommendation

It would be best to utilise and document the same version within all contract code to avoid any issues and inconsistencies that
may arise across Solidity versions. From conversations with the Brahma-fi team, it appears that all contracts were compiled with
and tested on Solidity version 0.8.4, so perhaps that one can be picked.

3.2 General Recommendations
Description

Among the many contracts, there are a few minor inaccuracies in the comments or the code and some parts could potentially be
improved with industry standard practices.

Examples
- 2 step changes for privileged contract addresses.

Some contracts in the system have setters for privileged addresses that control the contract logic, such as the keeper. Especially
for those that are intended to be controlled by a private key as opposed to a contract, it would be best to do a two step change
for those addresses. First, nominate the address, and second accept the nomination from that address ensuring that the access is
indeed secured. In fact, one contract already uses this pattern:

code/contracts/Vault.sol:L337-L359

https://consensys.github.io/smart-contract-best-practices/
https://swcregistry.io/
https://consensys.net/diligence/
https://consensys.net/diligence/audits/
https://consensys.net/diligence/fuzzing/
https://consensys.net/diligence/scribble/
https://consensys.net/diligence/about/

/// @notice Nominates new governance address.
/// @dev Governance will only be changed if the new governance accepts it. It will be pending till then.
/// @param _governance The address of new governance.
function setGovernance(address _governance) public {
onlyGovernance();
pendingGovernance = _governance;

/// @notice Emitted when governance is updated.
/// @param oldGovernance The address of the current governance.
/// @param newGovernance The address of new governance.
event UpdatedGovernance(
address indexed oldGovernance,
address indexed newGovernance

);

/// @notice The nomine of new governance address proposed by ‘setGovernance' function can accept the governance.
/// @dev This can only be called by address of pendingGovernance.
function acceptGovernance() public {

require(msg.sender == pendingGovernance, "INVALID_ADDRESS");

emit UpdatedGovernance(governance, pendingGovernance);

governance = pendingGovernance;

Consider adding the same pattern to these and others where you may see it as appropriate:

code/contracts/LyraL2/LyraPositionHandlerL2.s0l:L180-L184

/// @notice keeper setter

/// @param _keeper new keeper address

function setKeeper(address _keeper) public onlyAuthorized ({
keeper = _keeper;

code/contracts/Vault.sol:L365-L372

/// @notice Sets new keeper address.
/// @dev This can only be called by governance.
/// @param _keeper The address of new keeper.
function setKeeper(address _keeper) public {
onlyGovernance();
keeper = _keeper;
emit UpdatedKeeper(_keeper);

- Emit events for critical changes.

Some contracts emit events during critical changes, such as vault.setPerformanceFee() With emit UpdatePerformanceFee , Whereas other
contracts, like trade executors, do not have events for likewise crucial changes. Consider creating and implementing events for
functions like:

code/contracts/Batcher/Batcher.sol:L362-L372

/// @inheritdoc IBatcher

function setVaultLimit(uint256 maxAmount) external override {
onlyGovernance();
vaultInfo.maxAmount = maxAmount;

/// @notice Function to enable/disable deposit signature check
function setDepositSignatureCheck(bool enabled) public {
onlyGovernance();
checkValidDepositSignature = enabled;

code/contracts/ConvexTradeExecutor.sol:L30-L39

/// @param _harvester address of harvester
function setHandler(address _harvester) external onlyGovernance {
ConvexPositionHandler._configHandler(_harvester, vaultWantToken());

/// @notice Governance function to set max accepted slippage of swaps

///@param _slippage Max accepted slippage during harvesting

function setSlippage(uint256 _slippage) external onlyGovernance {
ConvexPositionHandler._setSlippage(_slippage);

code/contracts/ConvexExecutor/ConvexPositionHandler.sol:L449-L453

/// @notice Keeper function to set max accepted slippage of swaps
/// @param _slippage Max accepted slippage during harvesting
function _setSlippage(uint256 _slippage) internal {

maxSlippage = _slippage;

code/contracts/ConvexExecutor/Harvester.sol:L87-L96

/// @notice Keeper function to set position handler to harvest for
/// @param _addr address of the position handler
function setPositionHandler(address _addr)

external
override
validAddress(_addr)
onlyKeeper
{
positionHandler = _addr;
}

code/contracts/LyraTradeExecutor.sol:L65-L75

/// @notice Socket registry setter, called by keeper

/// @param _socketRegistry address of new socket registry

function setSocketRegistry(address _socketRegistry) public onlyKeeper {
socketRegistry = _socketRegistry;

/// @notice L2 Position Handler setter, called by keeper

/// @param _l2HandlerAddress address of new position handler on L2

function setlL2Handler(address _12HandlerAddress) public onlyKeeper {
positionHandlerL2Address = _12HandlerAddress;

code/contracts/LyralL2/LyraPositionHandlerL2.sol:L74-L76

function setSlippage(uint256 _slippage) public onlyAuthorized ({
slippage = _slippage;

code/contracts/LyralL2/LyraPositionHandlerL2.sol:L174-L184

/// @notice socket registry setter

/// @param _socketRegistry new address of socket registry

function setSocketRegistry(address _socketRegistry) public onlyAuthorized {
socketRegistry = _socketRegistry;

/// @notice keeper setter

/// @param _keeper new keeper address

function setKeeper(address _keeper) public onlyAuthorized {
keeper = _keeper;

- Unnecessary variables with hardcoded values

The convexpositionHandler has constants that are used throughout the contract as well as variables that are initialised within the
_configHandler() function with exactly the same hardcoded values. Consider keeping and using only one of the two sets

code/contracts/ConvexExecutor/ConvexPositionHandler.sol:L72-L85

/// @notice address of LP Token (ETH/stETH pool)
TERC20 public immutable 1pToken =
TERC20(0x06325440D014e39736583¢c165C2963BA99fAf14E) ;

/// @notice address of Convex reward pool
IConvexRewards public immutable baseRewardPool =
IConvexRewards(O0x0A760466E1B4621579a82a39CB56Dda2F4E70f03) ;
/// @notice address of Convex booster
IConvexBooster public immutable convexBooster =
IConvexBooster (0xF403C135812408BFbE8713b5A23204b3D48AAE31) ;

/// @notice address of ETH/sStETH pool
ICurvePool public immutable ethStEthPool =
ICurvePool(0xDC24316b9AEDO28F1497c275EB9192a3Ea0f67022) ;

code/contracts/ConvexExecutor/ConvexPositionHandler.sol:L92-L96

/// @param _wantToken address of want token

function _configHandler(address _harvester, address _wantToken) internal {
address ETH_STETH_POOL = 0xDC24316b9AE028F1497c275EB9192a3Eaff67022;
address LP_TOKEN = 0x06325440D014e39736583c165C2963BA99fAf14E;
address CONVEX_BOOSTER = OxF403C135812408BFbE8713b5A23a04b3D48AAE31 ;

- 2 functions with almost the same name doing the same thing

LyraPositionHandlerL2 and uniswapvaController (that LyraPositionHandlerL2 inherits from) have two functions that do the same thing
setSlippage() and _setSlippage() respectively. The former is public with a onlyauthorized modifier whereas the latter is internal only.
Consider implementing LyrapositionHandlerL2.setSlippage() such that it instead calls _setslippage()

code/contracts/LyralL2/LyraPositionHandlerL2.sol:L74-L76

function setSlippage(uint256 _slippage) public onlyAuthorized ({
slippage = _slippage;

code/contracts/LyraL2/UniswapV3Controller.sol:L43-L45

function _setSlippage(uint256 _slippage) internal {
slippage = _slippage;

- Typos

There are minor typos in a few function names as well as some inconsistent comments. Consider fixing to make things like code
search by function name / comment description easier.

e BaseTradeExecutor “initate” instead of “initlate”

code/contracts/BaseTradeExecutor.sol:L63-L67

function initateWithdraw(bytes calldata _data) public override onlyKeeper {
require(!withdrawalStatus.inProcess, "WITHDRW_IN_PROGRESS");
withdrawalStatus.inProcess = true;
_initiateWithdraw(_data);

e BaseTradeExecutor “WITHDRW_IN_PROGRESS” and “WIHDRW_COMPLETED” are inconsistently or incorrectly shortened as
opposed to “WITHDRAW_IN_PROGRESS” and “WITHDRAW_COMPLETED”

code/contracts/BaseTradeExecutor.sol:L63-L73

function initateWithdraw(bytes calldata _data) public override onlyKeeper {
require(!withdrawalStatus.inProcess, "WITHDRW_IN_PROGRESS");
withdrawalStatus.inProcess = true;
_initiateWithdraw(_data);

function confirmWithdraw() public override onlyKeeper {
require(withdrawalStatus.inProcess, "WIHDRW_COMPLETED");
_confirmWithdraw();
withdrawalStatus.inProcess = false;

® LyraTradeExecutor.confirmWithdraw() incorrect comment. It is the same as the one for _confirmpeposit() and says it confirms transfer
to the L2 contract as opposed to from the L2 contract.

code/contracts/LyraTradeExecutor.sol:L97-L102

/// @notice To confirm transfer of want tokens to L2
/// @dev Handle anything related to deposit confirmation
function _confirmWithdraw() internal override {
if (address(this).balance > 0)
IWETHO9 (wantTokenL1) .deposit{value: address(this).balance}();

® SocketViController.decodeSocketRegistryCalldata comment suggests that this is “not in use due to undertainity in bungee api
response", however this is called by verifySocketCalldata() in sendTokens() which in turn is called by LyraPositionHandler._deposit()

code/contracts/LyraExecutor/SocketV1Controller.sol:L37-L41

/// @notice Decode the socket request calldata

/// @dev Currently not in use due to undertainity in bungee api response
/// @param _data Bungee txn calldata

/// @return userRequest parsed calldata

function decodeSocketRegistryCalldata(bytes memory _data)

4 Security Specification

41 Privileged users trust assumptions

Keepers and governance are heavily trusted by the protocol users. Among other trust assumptions, they are trusted to:

Keepers are trusted to move batched funds to the vault contract.

Keepers act as a trusted intermediary to access L2 components.

Batcher contract depositors trust the keeper to call batchpeposit at some point, otherwise funds are locked in the contract.

Batcher contract depositors trust the keeper to process their withdraw requests.

Governance can sweep out any token from basically any contract with no regard for accounting.

4.2 Observations

® vault.totalExecutorFunds May run out of gas, which will require the governance to withdraw the funds held in some executor(s)
and then call removeExecutor .

e Batcher iS uUsing digital signatures to allow only a specific list of depositors. While this approach saves gas, it is worth taking
into account that this right currentl can not be revoked once given.

5 Findings
Each issue has an assigned severity:

e [T issues are subjective in nature. They are typically suggestions around best practices or readability. Code maintainers
should use their own judgment as to whether to address such issues.

* Medium iSsues are objective in nature but are not security vulnerabilities. These should be addressed unless there is a clear
reason not to.

e [issues are security vulnerabilities that may not be directly exploitable or may require certain conditions in order to be
exploited. All major issues should be addressed.

. issues are directly exploitable security vulnerabilities that need to be fixed.

5.1 The virtual price may not correspond to the actual price in the pool ==
Description

A Curve pool has a function that returns a “virtual price” of the LP token; this price is resistant to flash-loan attacks and any
manipulations in the Curve pool. While this price formula works well in some cases, there may be a significant period when a
trade cannot be executed with this price. So the deposit or withdrawal will also be done under another price and will have a
different result than the one estimated under the “virtual price”.

When depositing into Curve, Brahma is doing it in 2 steps. First, when depositing the user’s ETH to the Vault, the user’s share is
calculated according to the “virtual price”. And then, in a different transaction, the funds are deposited into the Curve pool. These
funds only consist of ETH, and if the deposit price does not correspond (with 0.3% slippage) to the virtual price, it will revert.

So we have multiple problems here:

1. If the chosen slippage parameter is very low, the funds will not be deposited/withdrawn for a long time due to reverts.

2. If the slippage is large enough, the attacker can manipulate the price to steal the slippage. Additionally, because of the 2-
steps deposit, the amount of Vault’s share minted to the users may not correspond to the LP tokens minted during the
second step.

5.2 ConvexPositionHandler._claimRewards incorrectly calculates amount of LP tokens to unstake
[Major

Description

ConvexPositionHandler._claimRewards iS an internal function that harvests Convex reward tokens and takes the generated yield in ETH
out of the Curve pool by calculating the difference in LP token price. To do so, it receives the current share price of the curve LP
tokens and compares it to the last one stored in the contract during the last rewards claim. The difference in share price is then
multiplied by the LP token balance to get the ETH yield via the yieldearned variable:

code/contracts/ConvexExecutor/ConvexPositionHandler.sol:L293-L300

uint256 currentSharePrice = ethStEthPool.get_virtual_price();
if (currentSharePrice > prevSharePrice) {

uint256 contractlLpTokenBalance = lpToken.balanceOf(address(this));

uint256 totallpBalance = contractLpTokenBalance +
baseRewardPool.balanceOf (address(this));

uint256 yieldEarned = (currentSharePrice - prevSharePrice) *
totalLpBalance;

However, to receive this ETH yield, LP tokens need to be unstaked from the Convex pool and then converted via the Curve pool.
To do this, the contract introduces 1pTokenEarned :

code/contracts/ConvexExecutor/ConvexPositionHandler.sol:L302

uint256 lpTokenEarned = yieldEarned / NORMALIZATION_FACTOR; // 18 decimal from virtual price

This calculation is incorrect. It uses yieldEarned which is denominated in ETH and simply divides it by the normalization factor to
get the correct number of decimals, which still returns back an amount denominated in ETH, whereas an amount denominated in
LP tokens should be returned instead.

This could lead to significant accounting issues including losses in the “no-loss” parts of the vault’s strategy as 1 LP token is
almost always guaranteed to be worth more than 1 ETH. So, when the intention is to withdraw x ETH worth of an LP token,
withdrawing x LP tokens will actually withdraw vy ETH worth of an LP token, where vsx . As a result, less than expected ETH will
remain in the Convex handler part of the vault, and the ETH yield will go to the Lyra options, which are much riskier. In the event
Lyra options don’t work out and there is more ETH withdrawn than expected, there is a possibility that this would result in a loss
for the vault.

Recommendation

The fix is straightforward and that is to calculate 1ptokentarned USing the currentshareprice already received from the Curve pool.
That way, it is the amount of LP tokens that will be sent to be unwrapped and unstaked from the Convex and Curve pools. This
will also take care of the normalization factor. uint256 1pTokenEarned = yieldEarned / currentSharePrice;

5.3 The WETH tokens are not taken into account inthe ConvexTradeExecutor.totalFunds
function iom

Description
The totalfunds function of every executor should include all the funds that belong to the contract:

code/contracts/ConvexTradeExecutor.sol:L21-L23

function totalFunds() public view override returns (uint256, uint256) {
return ConvexPositionHandler.positionInWantToken();

}

The convexTradeExecutor uses this function for calculations:

code/contracts/ConvexExecutor/ConvexPositionHandler.sol:L121-L137

function positionInWantToken()
public
view
override
returns (uint256, uint256)

uint256 stakedlLpBalanceInETH,
uint256 lpBalanceInETH,
uint256 ethBalance

) = _getTotalBalancesInETH(true);

return (
stakedLpBalanceInETH + lpBalanceInETH + ethBalance,
block.number

);

code/contracts/ConvexExecutor/ConvexPositionHandler.sol:L337-L365

function _getTotalBalancesInETH(bool useVirtualPrice)
internal
view
returns (
uint256 stakedLpBalance,
uint256 lpTokenBalance,
uint256 ethBalance

uint256 stakedLpBalanceRaw = baseRewardPool.balanceOf(address(this));
uint256 lpTokenBalanceRaw = lpToken.balanceOf(address(this));

uint256 totallpBalance = stakedLpBalanceRaw + lpTokenBalanceRaw;

// Here, in order to prevent price manipulation attacks via curve pools,
// When getting total position value -> its calculated based on virtual price
// During withdrawal -> calc_withdraw_one_coin() is used to get an actual estimate of ETH received if we were to remove liquid:
// The following checks account for this
uint256 totallLpBalanceInETH = useVirtualPrice
? _lpTokenValueInETHFromVirtualPrice(totallLpBalance)
: _lpTokenValueInETH(totallLpBalance);

1pTokenBalance = useVirtualPrice
? _lpTokenValueInETHFromVirtualPrice(lpTokenBalanceRaw)
: _lpTokenValueInETH(1lpTokenBalanceRaw);

stakedLpBalance = totallLpBalanceInETH - lpTokenBalance;
ethBalance = address(this).balance;

This function includes ETH balance, LP balance, and staked balance. But WETH balance is not included here. WETH tokens are
initially transferred to the contract, and before the withdrawal, the contract also stores WETH.

Recommendation

Include WETH balance into the totalFunds .

5.4 LyraPositionHandlerL2 inaccurate modifier onlyAuthorized may lead to funds loss if keeper is
compromised ivedium

Description

The LyrapositionHandlerL2 contract is operated either by the L2 keeper or by the L1 LyraPositionHandler Via the L2CrossDomainMessenger .
This is implemented through the onlyauthorized modifier:

code/contracts/LyraL2/LyraPositionHandlerL2.sol:L187-L195

modifier onlyAuthorized() {
require(
((msg.sender == L2CrossDomainMessenger &&
OptimismL2Wrapper .messageSender() == positionHandlerL1) ||
msg.sender == keeper),
"ONLY_AUTHORIZED"

)

-

This is set on:

withdraw()
openPosition()
closePosition()
setSlippage()
deposit()
sweep ()

setSocketRegistry()

© N O gk D =

setKeeper()

Functions 1-3 have a corresponding implementation on the L1 LyrapositionHandler , SO they could indeed be called by it with the
right parameters. However, 4-8 do not have an implemented way to call them from L1, and this modifier creates an unnecessarily
expanded list of authorised entities that can call them.

Additionally, even if their implementation is provided, it needs to be done carefully because msg.sender in their case is going to
end up being the L2crossbomainMessenger . FOr example, the sweep() function sends any specified token to msg.sender , with the
intention likely being that the recipient is under the team’s or the governance’s control - yet, it will be L2crossbomainMessenger and
the tokens will likely be lost forever instead.

On the other hand, the setkeeper() function would need a way to be called by something other than the keeper because it is
intended to change the keeper itself. In the event that the access to the L2 keeper is compromised, and the L1 LyraPositionHandler
has no way to call setkeeper() on the LyrapositionHandlerL2 , the whole contract and its funds will be compromised as well. So, there
needs to be some way to at least call the setkeeper() by something other than the keeper to ensure security of the funds on L2.

Examples

code/contracts/LyraL2/LyraPositionHandlerL2.s0l:L153-L184

function closePosition(bool toSettle) public override onlyAuthorized {
LyraController._closePosition(toSettle);
UniswapV3Controller._estimateAndSwap (
false,
LyraController.sUSD.balanceOf (address(this))

);

I%/111117177777777777777777777/7/7/7/7//7/777/777//////77777/7/7//7//7////777
MAINTAINANCE FUNCTIONS

[1177177/7/7777/777/77/7/%/

/// @notice Sweep tokens
/// @param _token Address of the token to sweepr
function sweep(address _token) public override onlyAuthorized {
IERC20(_token).transfer(
msg.sender,
IERC20(_token) .balanceOf (address(this))

);

/// @notice socket registry setter

/// @param _socketRegistry new address of socket registry

function setSocketRegistry(address _socketRegistry) public onlyAuthorized {
socketRegistry = _socketRegistry;

/// @notice keeper setter

/// @param _keeper new keeper address

function setKeeper(address _keeper) public onlyAuthorized {
keeper = _keeper;

Recommendation

Create an additional modifier for functions intended to be called just by the keeper (oniykeeper) such as functions 4-7, and create
an additional modifier onlyGovernance for the setkeeper() function. As an example, the L1 vault contract also has a setkeeper()
function that has a onlyGovernance() modifier. Please note that this will likely require implementing a function for the system’s
governance that can call LyraPositionHandlerL2.setkeeper() Via the L2CrossDomainMessenger .

5.5 Harvester.harvest swaps have no slippage parameters wedium

Description

As part of the vault strategy, all reward tokens for staking in the Convex ETH-stETH pool are claimed and swapped into ETH. The
swaps for these tokens are done with no slippage at the moment, i.e. the expected output amount for all of them is given as O.

In particular, one reward token that is most susceptible to slippage is LDO, and its swap is implemented through the Uniswap
router:

code/contracts/ConvexExecutor/Harvester.sol:L142-L155

function _swapLidoForWETH(uint256 amountToSwap) internal {
IUniswapSwapRouter.ExactInputSingleParams

memory params = IUniswapSwapRouter.ExactInputSingleParams({
tokenIn: address(1ldo),
tokenOut: address(weth),
fee: UNISWAP_FEE,
recipient: address(this),
deadline: block.timestamp,
amountIn: amountToSwap,
amountOutMinimum: @,
sqrtPriceLimitX96: ©

1)

uniswapRouter.exactInputSingle(params);

The swap is called with amountoutMinimum: @ , meaning that there is no slippage protection in this swap. This could result in a
significant loss of yield from this reward as MEV bots could “sandwich” this swap by manipulating the price before this
transaction and immediately reversing their action after the transaction, profiting at the expense of our swap. Moreover, the
Uniswap pools seem to have low liquidity for the LDO token as opposed to Balancer or Sushiswap, further magnifying slippage
issues and susceptibility to frontrunning.

The other two tokens - CVX and CRV - are being swapped through their Curve pools, which have higher liquidity and are less
susceptible to slippage. Nonetheless, MEV strategies have been getting more advanced and calling these swaps with O as
expected output may place these transactions in danger of being frontrun and “sandwiched” as well.

code/contracts/ConvexExecutor/Harvester.sol:L120-L126

if (cvxBalance > 0) {
cvxeth.exchange(1, 0, cvxBalance, 0, false);

}

if (crvBalance > 0) {
crveth.exchange(1, 0, crvBalance, 0, false);

}

In these calls .exchange , the last e is the min_dy argument in the Curve pools swap functions that represents the minimum
expected amount of tokens received after the swap, which is O in our case.

Recommendation

Introduce some slippage parameters into the swaps.

5.6 Harvester.rewardTokens doesn’t account for LDO tokens wediim
Description

As part of the vault’s strategy, the reward tokens for participating in Curve’s ETH-stETH pool and Convex staking are claimed and
swapped for ETH. This is done by having the convexpositionHandler contract call the reward claims API from Convex via
baseRewardPool.getReward() , Which transfers the reward tokens to the handler’s address. Then, the tokens are iterated through and
sent to the harvester to be swapped from convexPositionHandler by getting their list from harvester.rewardTokens() and calling

harvester.harvest()

code/contracts/ConvexExecutor/ConvexPositionHandler.sol:L274-L290

address[] memory rewardTokens = harvester.rewardTokens();

uint256 balance;
for (uint256 i = @; i < rewardTokens.length; i++) {
balance = IERC20(rewardTokens[i]).balanceOf(address(this));

if (balance > 0) {
IERC20(rewardTokens[i]).safeTransfer(
address(harvester),
balance

harvester.harvest();

However, harvester.rewardTokens() doesn’t have the LDO token’s address in its list, so they will not be transferred to the harvester to
be swapped.

code/contracts/ConvexExecutor/Harvester.sol:L77-L82

function rewardTokens() external pure override returns (address[] memory) {
address[] memory rewards = new address[](2);
rewards[0] address(crv);
rewards[1] address(cvx);
return rewards;

As a result, harvester.harvest() Will not be able to execute its _swapLidoForweTH() function since its 1doalance Will be O. This results in
missed rewards and therefore yield for the vault as part of its normal flow.

There is a possible mitigation in the current state of the contract that would require governance to call sweep() on the LDO
balance from the BaseTradeExecutor contract (that convexpositionHandler inherits) and then transferring those LDO tokens to the
harvester contract to perform the swap at a later rewards claim. This, however, requires transactions separate from the intended
flow of the system as well as governance intervention.

Recommendation

Add the LDO token address to the rewardtokens() function by adding the following line rewards[2] = address(1do);

5.7 Keeper design complexity medium
Description

The current design of the protocol relies on the keeper being operated correctly in a complex manner. Since the offchain code
for the keeper wasn’t in scope of this audit, the following is a commentary on the complexity of the keeper operations in the
context of the contracts. Keeper logic such as the order of operations and function argument parameters with log querying are
some examples where if the keeper doesn’t execute them correctly, there may be inconsistencies and issues with accounting of
vault shares and vault funds resulting in unexpected behaviour. While it may represent little risk or issues to the current Brahma-fi
team as the vault is recently live, the keeper logic and exact steps should be well documented so that public keepers (if and when
they are enabled) can execute the logic securely and future iterations of the vault code can account for any intricacies of the
keeper logic.

Examples

1. Order of operations: Convex rewards & new depositors profiting at the expense of old depositors’ yielded reward tokens. As
part of the vault’s strategy, the depositors’ ETH is provided to Curve and the LP tokens are staked in Convex, which yield rewards
such as CRV, CVX, and LDO tokens. As new depositors provide their ETH, the vault shares minted for their deposits will be less
compared to old deposits as they account for the increasing value of LP tokens staked in these pools. In other words, if the first
depositor provides 1 ETH, then when a new depositor provides 1 ETH much later, the new depositor will get less shares back as
the totalvaultFunds() Will increase:

code/contracts/Vault.sol:L97-L99

shares = totalSupply() > ©
? (totalSupply() * amountIn) / totalVaultFunds()
: amountIn;

code/contracts/Vault.sol:L127-L130

function totalVaultFunds() public view returns (uint256) {
return
TIERC20(wantToken) .balanceOf (address(this)) + totalExecutorFunds();

code/contracts/ConvexTradeExecutor.sol:L21-L23

function totalFunds() public view override returns (uint256, uint256) {
return ConvexPositionHandler.positionInWantToken();

}

code/contracts/ConvexExecutor/ConvexPositionHandler.sol:L121-L137

function positionInWantToken()
public
view
override
returns (uint256, uint256)

(

uint256 stakedLpBalanceInETH,
uint256 lpBalanceInETH,
uint256 ethBalance

) = _getTotalBalancesInETH(true);

return (
stakedLpBalanceInETH + lpBalanceInETH + ethBalance,
block.number

);

However, this does not account for the reward tokens yielded throughout that time. From the smart contract logic alone, there is
no requirement to first execute the reward token harvest. It is up to the keeper to execute convexTradeExecutor.claimRewards in order to
claim and swap their rewards into ETH, which only then will be included into the yield in the above

ConvexPositionHandler .positionInWantToken function. If this is not done prior to processing new deposits and minting new shares, new
depositors would unfairly benefit from the reward tokens’ yield that was generated before they deposited but accounted for in
the vault funds only after they deposited.

2. Order of operations: closing Lyra options before processing new deposits.

The other part of the vault’s strategy is utilising the yield from Convex to purchase options from Lyra on Optimism. While Lyra
options are risky and can become worthless in the event of bad trades, only yield is used for them, therefore keeping user
deposits’ initial value safe. However, their value could also yield significant returns, increasing the overall funds of the vault. Just
as With convexTradeExecutor , LyraTradeExecutor also has a totalfunds() function that feeds into the vault’s totalvaultrunds() function. In
Lyra’s case, however, it is a manually set value by the keeper that is supposed to represent the value of Lyra L2 options:

code/contracts/LyraTradeExecutor.sol:L42-L53

function totalFunds()
public
view
override
returns (uint256 posValue, uint256 lastUpdatedBlock)

return (
positionInWantToken.posValue +
TIERC20(vaultWantToken()) .balanceOf(address(this)),
positionInWantToken.lastUpdatedBlock

)

code/contracts/LyraTradeExecutor.sol:L61-L63

function setPosValue(uint256 _posValue) public onlyKeeper {
LyraPositionHandler._setPosValue(_posValue);

}

code/contracts/LyraExecutor/LyraPositionHandler.sol:L218-L221

function _setPosValue(uint256 _posValue) internal {
positionInWantToken.posValue = _posValue;
positionInWantToken.lastUpdatedBlock = block.number;

Solely from the smart contract logic, there is a possibility that a user deposits when Lyra options are valued high, meaning the
total vault funds are high as well, thus decreasing the amount of shares the user would have received if it weren’t for the Lyra
options’ value. Consequently, if after the deposit the Lyra options become worthless, decreasing the total vault funds, the user’s
newly minted shares will now represent less than what they have deposited.

While this is not currently mitigated by smart contract logic, it may be worked around by the keeper first settling and closing all
Lyra options and transferring all their yielded value in ETH, if any, to the Convex trade executor. Only then the keeper would
process new deposits and mint new shares. This order of operations is critical to maintain the vault’s intended safe strategy of
maintaining the user’s deposited value, and is dependent entirely on the keeper offchain logic.

3. Order of operations: additional trade executors and their specific management Similarly to the above examples, as more
trade executors and position handlers are added to the vault, the complexity for the keeper will go up significantly, requiring it to
maintain all correct orders of operations not just to keep the shares and funds accounting intact, but simply for the trade
executors to function normally. For example, in the case of Lyra, the keepers need to manually call confirmpeposit and
confirmWithdraw tO Update their depositstatus and withdrawalstatus respectively to continue normal operations or otherwise new
deposits and withdrawals wouldn’t be processed. On the other hand, the Convex executor does it automatically. Due to the
system design, there may be no single standard way to handle a trade executor. New executors may also require specific calls to
be done manually, increasing overall complexity keeper logic to support the system.

4, Keeper calls & arguments: depositFunds / batchDeposit and initiatewithdrawal / batchWithdraw userAddresses[] array + gas overhead
With the current gated approach and batching for deposits and withdrawals to and from the vault, users aren’t able to directly
mint and redeem their vault shares. Instead, they interact with the Batcher contract that then communicates with the vault
contract with the help of the keeper. However, while each user’s deposit and withdrawal amounts are registered in the contract
state variables such as depositledger[user] and withdrawLedger[user] , and there is an event emitted with the user address and their
action, to process them the keeper is required to keep track of all the user addresses in the batch they need to process. In
particular, the keeper needs to provide address[] memory users for both batchbeposit() and batchwithdraw() functions that
communicate with the vault. There is no stored list of users within the contract that could provide or verify the right users, so it is
entirely up to the keeper’s offchain logic to query the logs and retrieve the addresses required. Therefore, depending on the size
of the address[] memory users array, the keepers may need to consider the transaction gas limit, possibly requiring splitting the array
up and doing several transactions to process all of them. In addition, in the event of withdrawals, the keepers need to calculate
how much of the wanttoken (WETH in our case) will be required to process the withdrawals, and call withdrawFromExecutor() with that
amount to provide enough assets to cover withdrawals from the vault.

5. Timing: 50 block radius for updates on trade executors that need to have their values updated via a call Some trade
executors, like the Convex one, can retrieve their funds value at any time from Layer 1, thereby always being up to date with the
current block. Others, like the Lyra trade executor, require the keeper to update their position value by initiating a call, which also
updates their positionInWantToken.lastUpdatedBlock State variable. However, this variable is also called during during the
vault.totalvaultFunds() call during deposits and withdrawals via totalexecutorFunds() , which eventually calls

areFundsUpdated(blockUpdated) . This is a check to ensure that the current transaction’s block.number <= _blockUpdated + BLOCK_LIMIT , Where
sLock_LIMIT =50 blocks, i.e. roughly 12-15 min. As a result, keepers need to make sure that all executors that require a call for this
have their position values updated before and rather close to processing and deposits or withdrawals, or arefundsupdated() Wwill
revert those calls.

Recommendation

Document the exact order of operations, steps, necessary logs and parameters that keepers need to keep track of in order for the
vault strategy to succeed.

5.8 Vault.deposit -Possible front running attack wedgium

Description

To determine the number of shares to mint to a depositor, (totalSupply() * amountIn) / totalvaultFunds() iS used. Potential attackers
can spot a call to vault.deposit and front-run it with a transaction that sends tokens to the contract, causing the victim to receive
fewer shares than what he expected.

In case totalvaultFunds() iS greater than totalsupply() * amountIn , then the number of shares the depositor receives will be O,
although amountzn of tokens will be still pulled from the depositor’s balance.

An attacker with access to enough liquidity and to the mem-pool data can spot a call to vault.deposit(amountIn, receiver) and front-
run it by sending at least totalsupplyBefore * (amountIn - 1) + 1 tokens to the contract . This way, the victim will get O shares, but
amountIn Will still be pulled from its account balance. Now the price for a share is inflated, and all shareholders can redeem this
profit using vault.withdraw .

The attack vector mentioned above is the general front runner case, the most profitable attack vector will be the case when the
attacker is able to determine the share price (for instance if the attacker mints the first share). In this scenario, the attacker will
need to send at least attackerShares * (amountIn -1) + 1 tO the contract,(attackershares is completely controlled by the attacker), and
this amount can be then entirely redeemed by the attacker himself (alongside the victim’s deposit) by calling vault.withdraw . The
attacker can lower the risk of losing the funds he sent to the contract to some other front-runner by using the flashbots api.
Although both vault.deposit and vault.withdraw are callable only by the Batcher contract, the keeper bot can still be tricked to
process user deposits in a way that allows this attack to happen.

Recommendation

The specific case that’s mentioned in the last paragraph can be mitigated by adding a validation check to vault.peposit enforcing
that shares > 8 . However, it will not solve the general case since the victim can still lose value due to rounding errors. In order to
fix that, vault.peposit should validate that shares >= amountMin Where amountmin is an argument that should be determined by the
depositor off-chain.

5.9 Approving MAX_UINT amount of ERC20 tokens grm

Description

Approving the maximum value of uint256 is a known practice to save gas. However, this pattern was proven to increase the
impact of an attack many times in the past, in case the approved contract gets hacked.

Examples

code/contracts/BaseTradeExecutor.sol:L19

IERC20(vaultWantToken()).approve(vault, MAX_INT);

code/contracts/Batcher/Batcher.sol:L48

TERC20(vaultInfo.tokenAddress) .approve(vaultAddress, type(uint256).max);

code/contracts/ConvexExecutor/ConvexPositionHandler.sol:L106-L112

TERC20(LP_TOKEN) .safeApprove(ETH_STETH_POOL, type(uint256).max);

TIERC20(LP_TOKEN) .safeApprove(
address(CONVEX_BOOSTER),
type(uint256) .max

code/contracts/ConvexExecutor/Harvester.sol:L65-L69

crv.safeApprove(address(crveth), type(uint256).max);
cvx.safeApprove(address(cvxeth), type(uint256).max);

ldo.safeApprove(address(uniswapRouter), type(uint256).max);

code/contracts/LyralL2/LyraPositionHandlerL2.sol:L63-L71

IERC20(wantTokenL2) .safeApprove(
address(UniswapV3Controller.uniswapRouter),
type(uint256) .max

);

LyraController.sUSD.safeApprove(
address(UniswapV3Controller.uniswapRouter),
type(uint256) .max

)

Recommendation

Consider approving the exact amount that’s needed to be transferred, or alternatively, add an external function that allows the
revocation of approvals.

5.10 Batcher.depositFunds may allow for more deposits than vaultinfo.maxAmount ¢

Description

As part of a gradual rollout strategy, the Brahma-fi system of contracts has a limit of how much can be deposited into the
protocol. This is implemented through the Batcher contract that allows users to deposit into it and keep the amount they have
deposited in the depositLedger[recipient] state variable. In order to cap how much is deposited, the user’s input amountin is
evaluated within the following statement:

code/contracts/Batcher/Batcher.sol:L109-L116

require(
IERC20(vaultInfo.vaultAddress).totalSupply() +
pendingDeposit -
pendingWithdrawal +
amountIn <=
vaultInfo.maxAmount,
"MAX_LIMIT_EXCEEDED"

However, while pendingbeposit , amountIn , and vaultInfo.maxAmount are denominated in the vault asset token (WETH in our case),
IERC20(vaultInfo.vaultAddress).totalSupply() and pendingwithdrawal represent vault shares tokens, creating potential mismatches in this
evaluation.

As the yield brings in more and more funds to the vault, the amount of share minted for each token deposited in decreases, so
totalSupply() becomes less than the total deposited amount (not just vault funds) as the strategy succeeds over time. For
example, at first x deposited tokens would mint x shares. After some time, this would create additional funds in the vault

through yield, and another x deposit of tokens would mint less than x shares, say x-v, where vy is some number greater than O

representing the difference in the number of shares minted. So, while there were 2+x deposited tokens, totalsupply()=(2#x-Y)
shares would have been minted in total. However, at the time of the next deposit, a user’s amountin Will be added with
totalSupply()=(2*Xx-Y) number of shares instead of a greater 2«x number of deposited tokens. So, this will undershoot the actual
amount of tokens deposited after this user’s deposit, thus potentially evaluating it less than maxamount , and letting more user
deposits get inside the vault than what was intended.

Recommendation

Consider either documenting this potential discrepancy or keeping track of all deposits in a state variable and using that inside
the require statement..

511 The Deposit and Withdraw event are always emitted with zero amount gz

Description

The events emitted during the deposit or withdraw are supposed to contain the relevant amounts of tokens involved in these
actions. But in fact the current balance of the address is used in both cases. These balances will be equal to zero by that time:

code/contracts/ConvexExecutor/ConvexPositionHandler.sol:L151-L155

IWETH9 (address(wantToken)) .withdraw(depositParams._amount) ;
_convertEthIntoLpToken(address(this).balance);

emit Deposit(address(this).balance);

code/contracts/ConvexExecutor/ConvexPositionHandler.sol:L207-L209

IWETH9 (address(wantToken)) .deposit{value: address(this).balance}();

emit Withdraw(address(this).balance);

512 BaseTradeExecutor.confirmDeposit | confirmWithdraw - Violation of the “checks-
effects-interactions” pattern grm

Description

Both confirmbeposit, confirmwithdraw Might be re-entered by the keeper (in case it is a contract), in case the derived contract allows
the execution of untrusted code.

Examples

code/contracts/BaseTradeExecutor.sol:L57-L61

function confirmDeposit() public override onlyKeeper {
require(depositStatus.inProcess, "DEPOSIT_COMPLETED");
_confirmDeposit();
depositStatus.inProcess = false;

code/contracts/BaseTradeExecutor.sol:L69-L73

function confirmWithdraw() public override onlyKeeper {
require(withdrawalStatus.inProcess, "WIHDRW_COMPLETED");
_confirmWithdraw();
withdrawalStatus.inProcess = false;

Recommendation

Although the impact is very limited, it is recommended to implement the “checks-effects-interactions” in both functions.

5.13 Batcher doesn’t work properly with arbitrary tokens ¢rm

Description

The Batcher and the vault contracts initially operate with ETH and WETH. But the contracts are supposed to be compatible with
any other ERC-20 tokens.

For example, in the Batcher.deposit function, there is an option to transfer ETH instead of the token, which should only be
happening if the token is WETH. Also, the token is named wetn , but if the intention is to use the Batcher contract with arbitrary
tokens token, it should be named differently.

code/contracts/Batcher/Batcher.sol:L89-L100

if (ethSent > 0) {
amountIn = ethSent;
WETH.deposit{value: ethSent}();

}
else {
IERC20(vaultInfo.tokenAddress).safeTransferFrom(
msg.sender,
address(this),
amountIn
Ik
}

Appendix 1- Files in Scope

This audit covered the following files:

File SHA-1 hash

interfaces/BasePositionHandler.sol cb7eb1ed869d31b2f97cc36c025b1a0aa630fd8e
library/AddArrayLib.sol 393868cb0414892e35ce3ceadd6e2457e2f526f6
library/Math.sol 7401e9ae2b668aa9428627a83b0a53f58e11b591
contracts/BaseTradeExecutor.sol 9c08d481463debccbcda7af365799fd99ead6baaf
contracts/Batcher/EIP712.sol 385a2972608861d04b9306bd477b5552ed92c388
contracts/Batcher/Batcher.sol 66c88aeb6806033aa79¢151b33d4eea22169cdef
contracts/LyralL.2/OptimismL2Wrapper.sol 3f9161d6e7270630468ba8aac78cdbd0c0b4216b
contracts/LyralL2/LyraPositionHandlerL2.sol 700b5da119914b9018dc716da2faf8dc95f1c5dc
contracts/LyralL2/UniswapV3Controller.sol 573ceb693240249449a7b8ec9c2848bda81f9a0f
contracts/Lyral.2/LyraController.sol 93265667bde12d6¢52170de9533a025a05945916
contracts/Lyral.2/SocketV1Controller.sol bd56fb5edb69d5a5ec706d26ab5396291c3dcb57
contracts/Vault.sol 825a4ee02a1223e7196c6f2dfabb24a19e9d8fb0
contracts/LyraTradeExecutor.sol b0f270388b7f5a6eb2e6cc95258b1d307cc0f20a
contracts/LyraExecutor/OptimismWrapper.sol 24234fc661797384a6737b2fe14c1d300047cf3b
contracts/LyraExecutor/SocketV1Controller.sol 7f33bca869994e24ce042a85b60a63969a76bed6
contracts/LyraExecutor/LyraPositionHandler.sol 41380f763675d6¢c03b3a271f673035¢c990b1f390
contracts/ConvexTradeExecutor.sol 6dec70809ff3ffb715eae217732a9d7084895116
contracts/ConvexExecutor/Harvester.sol 34d6ec3a29fb729cded7bfb5e2c7de959400a6bd

contracts/ConvexExecutor/ConvexPositionHandler.sol 1e1d650b165¢c710429eff5599bce592d33e46857

Appendix 2 - Disclosure

ConsenSys Diligence (“CD”) typically receives compensation from one or more clients (the “Clients”) for performing the analysis
contained in these reports (the “Reports”). The Reports may be distributed through other means, including via ConsenSys
publications and other distributions.

The Reports are not an endorsement or indictment of any particular project or team, and the Reports do not guarantee the
security of any particular project. This Report does not consider, and should not be interpreted as considering or having any
bearing on, the potential economics of a token, token sale or any other product, service or other asset. Cryptographic tokens are
emergent technologies and carry with them high levels of technical risk and uncertainty. No Report provides any warranty or
representation to any Third-Party in any respect, including regarding the bugfree nature of code, the business model or
proprietors of any such business model, and the legal compliance of any such business. No third party should rely on the Reports
in any way, including for the purpose of making any decisions to buy or sell any token, product, service or other asset.
Specifically, for the avoidance of doubt, this Report does not constitute investment advice, is not intended to be relied upon as
investment advice, is not an endorsement of this project or team, and it is not a guarantee as to the absolute security of the
project. CD owes no duty to any Third-Party by virtue of publishing these Reports.

PURPOSE OF REPORTS The Reports and the analysis described therein are created solely for Clients and published with their
consent. The scope of our review is limited to a review of code and only the code we note as being within the scope of our review
within this report. Any Solidity code itself presents unique and unguantifiable risks as the Solidity language itself remains under
development and is subject to unknown risks and flaws. The review does not extend to the compiler layer, or any other areas
beyond specified code that could present security risks. Cryptographic tokens are emergent technologies and carry with them
high levels of technical risk and uncertainty. In some instances, we may perform penetration testing or infrastructure
assessments depending on the scope of the particular engagement.

CD makes the Reports available to parties other than the Clients (i.e., “third parties”) - on its website. CD hopes that by making
these analyses publicly available, it can help the blockchain ecosystem develop technical best practices in this rapidly evolving
area of innovation.

LINKS TO OTHER WEB SITES FROM THIS WEB SITE You may, through hypertext or other computer links, gain access to web sites
operated by persons other than ConsenSys and CD. Such hyperlinks are provided for your reference and convenience only, and
are the exclusive responsibility of such web sites’ owners. You agree that ConsenSys and CD are not responsible for the content
or operation of such Web sites, and that ConsenSys and CD shall have no liability to you or any other person or entity for the use
of third party Web sites. Except as described below, a hyperlink from this web Site to another web site does not imply or mean
that ConsenSys and CD endorses the content on that Web site or the operator or operations of that site. You are solely
responsible for determining the extent to which you may use any content at any other web sites to which you link from the
Reports. ConsenSys and CD assumes no responsibility for the use of third party software on the Web Site and shall have no
liability whatsoever to any person or entity for the accuracy or completeness of any outcome generated by such software.

TIMELINESS OF CONTENT The content contained in the Reports is current as of the date appearing on the Report and is subject
to change without notice. Unless indicated otherwise, by ConsenSys and CD.

POWERED BY CONSENSYS

https://consensys.net/

