A CONSENSYS DILIGENCE AUDIT REPORT

Skyweaver

1 Executive Summary
2 Scope

3 Security Specification
3.1 Actors
3.2 Trust Model

3.3 Important Security Properties

4 Issues

4.1 Gold order size should be
limited v Addressed

4.2 Price and refund changes may
cause failures

v Addressed

4.3 Re-entrancy attack allows to
buy EternalHeroes cheaper

v Addressed

4.4 Supply limitation
misbehaviors ‘Medium

v Addressed

4.5 Owner can modify gold cards
distribution after someone
committed to buy 'Medium

Won't Fix

4.6 A buyer of a gold card can
manipulate randomness Medium

Won't Fix

4.7 A refund is sent to recipient
Medium Won't Fix

4.8 Randomness can be
manipulated by miners ({13

Won't Fix
Appendix 1 - Files in Scope

Appendix 2 - Disclosure

Book your 1-Day Security

1 Executive Summary Spot Check

This report presents the results of our engagement with Horizon Games to review the
security of their smart contracts for the SkyWeaver game.

BOOK NOW

Kravchenko. A total of 5 person-days were spent. Date April 2020

The review was conducted over one week, from April 1st to April 10th by Sergii

During this week, | focused primarily on factories that produce new cards/items/tokens, Auditors Sergii Kravchenko
trust-related issues, the RNG mechanism, and re-entrancy attacks (especially within ERC-
1155 token callbacks).

The review identified 7 issues of different severities (see section 4).

The allotted time for the review (1 person-week) was deemed insufficient from the start to do a comprehensive audit of the whole
system. As such, some compromises had to be made on the completeness of the review.

2 Scope

Our review is focused on the commit hash bdeec184db6168bf86656a48b12d5747950b54d9 Of https://github.com/horizon-games/SkyWeaver-
contracts repository. The list of files in scope can be found in the Appendix.

3 Security Specification

This section describes, from a security perspective, the expected behavior of the system under the review. It is not a substitute
for documentation.

3.1 Actors

The relevant actors are listed below with their respective abilities:

e System owners - there are multiple contracts in the system that have an owner that potentially can be different addresses in
different contracts, but logically it’s the same owner (Horizon admins).
O SilverCardsFactory

= can register/deregister card IDs.
= can change the price.
= withdraw arcadeum coins from the contract.

O EternalHeroesFactory

= can register/deregister item IDs.
= cannot change price, pricing is set during the contract creation.
= withdraw arcadeum coins from the contract.

O GoldCardsFactory

= can register/deregister card IDs.
= can change the price.

= can change refund.

= can change rngpelay .

O WeaveFactory

= can mint weave for anyone, minting is limited per time. The rate is fixed and cannot be changed.

O SWSupplyManager
B can manage factories.

= can set maximum supply for each token ID.
= can lock some token IDs.
e Token holders - anyone who has enough tokens (arcadeum coins or weave) can buy cards/items from factories.

e Anyone - can mine gold card for any already committed gold order and recommit.

3.2 Trust Model

In any smart contract system, it's important to identify what trust is expected/required between various actors. For this review, we
established the following trust model:

The system has owners that have some centralized power, like changing prices/refunds. From other perspectives, the system is
pretty much permissionless for the users, anyone with tokens can buy/melt items for a predefined/limited price.

Random number generation is not completely trustless; it may potentially be manipulated by miners. However, unless gold cards
become expensive, there is no clear incentive for miners to do so.

3.3 Important Security Properties

https://github.com/horizon-games/SkyWeaver-contracts
https://pages.consensys.net/diligence-1-day-spot-check

The following is a non-exhaustive list of security properties that were discovered during this review:

e To decrease trust assumptions, owner can lock some token IDs in swsupplymanager to ensure that only already existing factories
with already existing permissions can mint items with these IDs.

e Sometimes price can be changed by the admin using a front-running technique. In that case, users have mechanisms that
allows them to cancel their order if the price is too high. Also, the owner can modify the gold cards list between committing
to mine a gold card and actually mining it.

e In some factories prices include decimals, in some - not.

4 Issues

Each issue has an assigned severity:

e [issues are subjective in nature. They are typically suggestions around best practices or readability. Code maintainers
should use their own judgment as to whether to address such issues.

* Medium issues are objective in nature but are not security vulnerabilities. These should be addressed unless there is a clear
reason not to.

o [issues are security vulnerabilities that may not be directly exploitable or may require certain conditions in order to be
exploited. All major issues should be addressed.

. issues are directly exploitable security vulnerabilities that need to be fixed.

41 Gold order size should be limited gzm Vadaresses

Resolution

Addressed in horizon-games/SkyWeaver-contracts#9 by adding a limit for cold cards amount in one order.

Description

When a user submits an order to buy gold cards, it’s possible to buy a huge amount of cards. _commit function uses less gas than
mineGolds , Which means that the user can successfully commit to buying this amount of cards and when it’s time to collect them,
mineGolds function may run out of gas because it iterates over all card IDs and mints them:

code/contracts/shop/GoldCardsFactory.sol:L375-L376

skyweaverAssets.batchMint(_order.cardRecipient, _ids, amounts, "");

Recommendation

Limit a maximum gold card amount in one order.

4.2 Price and refund changes may cause failures qmm (Vidaresed

Resolution

Addressed in horizon-games/SkyWeaver-contracts#3.

Fix involves burning the weave when the commit occurs instead of when the minting of the gold cards occur.

Description
Price and refund for gold cards are used in 3 different places: commit, mint, refund.
Weave tokens spent during the commit phase

code/contracts/shop/GoldCardsFactory.sol:L274-L279

function _commit(uint256 _weaveAmount, GoldOrder memory _order)

internal
{
uint256 total_cost = _order.cardAmount.mul(goldPrice).add(_order.feeAmount);
uint256 refund_amount = _weaveAmount.sub(total_cost); // Will throw if insufficient amount received

but they are burned rngpelay blocks after

code/contracts/shop/GoldCardsFactory.sol:L371-L373

uint256 weave_to_burn = (_order.cardAmount.mul(goldPrice)).sub(_order.cardAmount.mul(goldRefund));
weaveContract.burn(weaveID, weave_to_burn);

If the price is increased between these transactions, mining cards may fail because it should burn more weave tokens than there
are tokens in the smart contract. Even if there are enough tokens during this particular transaction, someone may fail to melt a
gold card later.

https://github.com/horizon-games/SkyWeaver-contracts/pull/9
https://github.com/horizon-games/SkyWeaver-contracts/pull/3

If the price is decreased, some weave tokens will be stuck in the contract forever without being burned.
Recommendation

Store goldPrice and goldRefund iN Goldorder .

4.3 Re-entrancy attack allows to buy EternalHeroes cheaper qom [Vadarese

Resolution

Addressed in horizon-games/SkyWeaver-contracts#4.
Minting tokens before sending refunds. Subsequent PR will also add re-entrancy guard for all shops.

And re-entrancy guard added here: horizon-games/SkyWeaver-contracts#10

Description

When buying eternal heroes in _buy function of EternalHercesFactory contract, a buyer can do re-entracy before items are minted.

code/contracts/shop/EternalHeroesFactory.sol:L278-L284

uint256 refundAmount = _arcAmount.sub(total_cost);
if (refundAmount > @) {
arcadeumCoin.safeTransferFrom(address(this), _recipient, arcadeumCoinID, refundAmount, "");
}
factoryManager.batchMint(_recipient, _ids, amounts_to_mint, "");

Since price should increase after every n items are minted, it’s possible to buy more items with the old price.

Recommendation

Add re-entrancy protection or mint items before sending the refund.

4.4 Supply limitation misbehaviors wedium VARG

Resolution

Logic remains unchanged as it’s the desired behaviour. But the issue is mitigated in horizon-games/SkyWeaver-contracts#5
by renaming the term “currentSupply” to “currentlssuance” and “maxSupply” to “maxIssuance” for maximum clarity.

Description
In swsupplymManager contract, the owner can limit supply for any token ID by setting maxsupply :

code/contracts/shop/SWSupplyManager.sol:L149-L165

function setMaxSupplies(uint256[] calldata _ids, uint256[] calldata _newMaxSupplies) external onlyOwner() {
require(_ids.length == _newMaxSupplies.length, "SWSupplyManager#setMaxSupply: INVALID_ARRAYS_LENGTH");

for (uint256 i = @; i < _ids.length; i++) {

if (maxSupply[_ids[i]] > @) {

require(

0@ < _newMaxSupplies[i] && _newMaxSupplies[i] < maxSupply[_ids[i]],
"SWSupplyManager#setMaxSupply: INVALID_NEW_MAX_SUPPLY"
)
}
maxSupply[_ids[i]] = _newMaxSupplies[i];

}

emit MaxSuppliesChanged(_ids, _newMaxSupplies);
}

The problem is that you can set maxsupply that is lower than currentsupply , which would be an unexpected state to have.
Also, if some tokens are burned, their currentsupply is not decreasing:

code/contracts/shop/SWSupplyManager.sol:L339-L345

function burn(
uint256 _id,
uint256 _amount)
external

{

_burn(msg.sender, _id, _amount);

}

This unexpected behaviour may lead to burning all of the tokens without being able to mint more.

Recommendation

https://github.com/horizon-games/SkyWeaver-contracts/pull/4
https://github.com/horizon-games/SkyWeaver-contracts/pull/10
https://github.com/horizon-games/SkyWeaver-contracts/pull/5

Properly track currentsupply by modifying itin burn function. Consider having a following restriction

require(_newMaxSupplies[i] > currentSupply[_ids[i]]) in setMaxSupplies function.

4.5 Owner can modify gold cards distribution after someone committed to buy wedgiim ~ wont Fix

Resolution

The client decided not to fix this issue with the following comment:

This issue will be addressed by having the owner be a delayed multisig, such that users will have time to witness a
change in the distribution that is about to occur.

Description

When a user commits to buying a gold card (and sends weave), there is an expected distribution of possible outcomes. But the
problem is that owner can change distribution by calling registerips and deregisterips functions.

Additionally, owner can buy any specific gold card avoiding RNG mechanism. It can be done by deleting all the unwanted cards,
mining the card and then returning them back. And if owner removes every card from the list, nothing is going to be minted.

Recommendation
There are a few possible recommendations:

e Fix a distribution for every order after commit (costly solution).
e Make it an explicit part of the trust model (increases trust to the admins).

e Cancel pending orders if gold cards IDs are changed.

4.6 A buyer of a gold card can manipulate randomness wiedium ~ won'tFix

Resolution

The client decided not to fix this issue with the following comment:

We hereby assume that Horizon will always be willing to mine gold cards even at a loss considering the amount of
gold cards that can be created per week is limited. If in practice this becomes a problem, we can upgrade this
factory.

Description

When a user is buying a gold card, _commit function is called. After rngpelay number of blocks, someone should call mineGo1ds
function to actually mint the card. If this function is not called during 255 blocks (around 1 hour), a user should call recommit to try
to mint a gold card again with a new random seed. So if the user doesn’t like a card that’s going to be minted (randomly), user
can try again until a card is good. The issue is medium because anyone can call minecolds function in order to prevent this
behaviour. But it costs money and there’s no incentive for anyone to do so.

Recommendation

Create a mechanism to avoid this kind of manipulation. For example, make sure there is an incentive for someone to call mineGolds
function

4.7 A refund is sent to recipient wedgiim wont Fix

Resolution

The client decided not to fix this issue with the following comment:

It's unlikely users will send inexact amount since price is fixed. If this becomes a problem in practice we can re-
deploy the factory with this added functionality.

Description

When a refund is sent, it's sent to recipient . In case if a user wants to keep game items and money separate, it makes sense to
send a refund back to from address.

Recommendation

Since there may be different use cases, consider adding refundaddress to order structure.

4.8 Randomness can be manipulated by miners ¢ wontrix

Resolution

The client decided not to fix this issue with the following comment:

For miners to be able to profit, they would have to forfeit multiple blocks and the desired gold cards would have to
be very expensive in the first place (e.g. in the $10k) for it to be worth it for them. In practice, there are also other
oppotunities for miners that offer better returns, but if it ever turned out to be a problem, we would see it coming
and we can then use a more secure and expensive source of RNG as the gold cards would be very expensive and
the additional cost would be worth it.

Description

Random number generator uses future blockhash as a seed. So it’'s possible for miners to manipulate that value in order to get a
better gold card. The issue is minor because it only makes sense if the cost of the card is high enough to do the extra work on the
miner side.

Recommendation

Use better RNG algorithms if the price of gold cards is high enough for the miners to start manipulation.

Appendix 1 - Files in Scope

This audit covered the following files:

File SHA-1 hash
shop/EternalHeroesFactory.sol ba8eb5e4
shop/GoldCardsFactory.sol 1240d2c
shop/SWSupplyManager.sol f9c1825
shop/SilverCardsFactory.sol 23a3cb2
shop/WeaveFactory.sol a4058da
tokens/SkyweaverAssets.sol 1e1f884
tokens/SkyweaverCurrencies.sol 8abebc8

abstract/AbstractERC1155MintBurn.sol 5d2e041

utils/Ownable.sol 15e6d2b

Appendix 2 - Disclosure

ConsenSys Diligence (“CD”) typically receives compensation from one or more clients (the “Clients”) for performing the analysis
contained in these reports (the “Reports”). The Reports may be distributed through other means, including via ConsenSys
publications and other distributions.

The Reports are not an endorsement or indictment of any particular project or team, and the Reports do not guarantee the
security of any particular project. This Report does not consider, and should not be interpreted as considering or having any
bearing on, the potential economics of a token, token sale or any other product, service or other asset. Cryptographic tokens are
emergent technologies and carry with them high levels of technical risk and uncertainty. No Report provides any warranty or
representation to any Third-Party in any respect, including regarding the bugfree nature of code, the business model or
proprietors of any such business model, and the legal compliance of any such business. No third party should rely on the Reports
in any way, including for the purpose of making any decisions to buy or sell any token, product, service or other asset.
Specifically, for the avoidance of doubt, this Report does not constitute investment advice, is not intended to be relied upon as
investment advice, is not an endorsement of this project or team, and it is not a guarantee as to the absolute security of the
project. CD owes no duty to any Third-Party by virtue of publishing these Reports.

PURPOSE OF REPORTS The Reports and the analysis described therein are created solely for Clients and published with their
consent. The scope of our review is limited to a review of Solidity code and only the Solidity code we note as being within the
scope of our review within this report. The Solidity language itself remains under development and is subject to unknown risks
and flaws. The review does not extend to the compiler layer, or any other areas beyond Solidity that could present security risks.
Cryptographic tokens are emergent technologies and carry with them high levels of technical risk and uncertainty.

CD makes the Reports available to parties other than the Clients (i.e., “third parties”) - on its website. CD hopes that by making
these analyses publicly available, it can help the blockchain ecosystem develop technical best practices in this rapidly evolving
area of innovation.

LINKS TO OTHER WEB SITES FROM THIS WEB SITE You may, through hypertext or other computer links, gain access to web sites
operated by persons other than ConsenSys and CD. Such hyperlinks are provided for your reference and convenience only, and
are the exclusive responsibility of such web sites’ owners. You agree that ConsenSys and CD are not responsible for the content
or operation of such Web sites, and that ConsenSys and CD shall have no liability to you or any other person or entity for the use
of third party Web sites. Except as described below, a hyperlink from this web Site to another web site does not imply or mean
that ConsenSys and CD endorses the content on that Web site or the operator or operations of that site. You are solely
responsible for determining the extent to which you may use any content at any other web sites to which you link from the
Reports. ConsenSys and CD assumes no responsibility for the use of third party software on the Web Site and shall have no
liability whatsoever to any person or entity for the accuracy or completeness of any outcome generated by such software.

TIMELINESS OF CONTENT The content contained in the Reports is current as of the date appearing on the Report and is subject
to change without notice. Unless indicated otherwise, by ConsenSys and CD.

Request a Security Review Today

Get in touch with our team to request a quote for a smart contract audit or a 1-day security review.

CONTACT US

AUDITS Subscribe to Our Newsletter

BLOG
Stay up-to-date on our latest offerings, tools, and

TOOLS the world of blockchain security.

RESEARCH

ABOUT e-mail address
CONTACT

CAREERS

PRIVACY POLICY

roweren sy LY CONSENSYS

http://localhost:1313/diligence/audits/
http://localhost:1313/diligence/blog/
http://localhost:1313/diligence/tools/
http://localhost:1313/diligence/research/
http://localhost:1313/diligence/about/
http://localhost:1313/diligence/contact/
https://consensys.net/open-roles/?discipline=32525
http://localhost:1313/diligence/privacy-policy/
https://consensys.net/
http://localhost:1313/diligence/contact/

